Package: randnet 0.7

Tianxi Li

randnet: Random Network Model Estimation, Selection and Parameter Tuning

Model selection and parameter tuning procedures for a class of random network models. The model selection can be done by a general cross-validation framework called ECV from Li et. al. (2016) <arxiv:1612.04717> . Several other model-based and task-specific methods are also included, such as NCV from Chen and Lei (2016) <arxiv:1411.1715>, likelihood ratio method from Wang and Bickel (2015) <arxiv:1502.02069>, spectral methods from Le and Levina (2015) <arxiv:1507.00827>. Many network analysis methods are also implemented, such as the regularized spectral clustering (Amini et. al. 2013 <doi:10.1214/13-AOS1138>) and its degree corrected version and graphon neighborhood smoothing (Zhang et. al. 2015 <arxiv:1509.08588>). It also includes the consensus clustering of Gao et. al. (2014) <arxiv:1410.5837>, the method of moments estimation of nomination SBM of Li et. al. (2020) <arxiv:2008.03652>, and the network mixing method of Li and Le (2021) <arxiv:2106.02803>. It also includes the informative core-periphery data processing method of Miao and Li (2021) <arxiv:2101.06388>. The work to build and improve this package is partially supported by the NSF grants DMS-2015298 and DMS-2015134.

Authors:Tianxi Li [aut, cre], Elizeveta Levina [aut], Ji Zhu [aut], Can M. Le [aut]

randnet_0.7.tar.gz
randnet_0.7.zip(r-4.5)randnet_0.7.zip(r-4.4)randnet_0.7.zip(r-4.3)
randnet_0.7.tgz(r-4.4-any)randnet_0.7.tgz(r-4.3-any)
randnet_0.7.tar.gz(r-4.5-noble)randnet_0.7.tar.gz(r-4.4-noble)
randnet_0.7.tgz(r-4.4-emscripten)randnet_0.7.tgz(r-4.3-emscripten)
randnet.pdf |randnet.html
randnet/json (API)

# Install 'randnet' in R:
install.packages('randnet', repos = c('https://tianxili.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.44 score 2 packages 46 scripts 308 downloads 1 mentions 24 exports 71 dependencies

Last updated 2 years agofrom:9dcbcd5ef7. Checks:6 OK, 1 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 13 2025
R-4.5-winOKJan 13 2025
R-4.5-linuxOKJan 13 2025
R-4.4-winOKJan 13 2025
R-4.4-macOKJan 13 2025
R-4.3-winOKJan 13 2025
R-4.3-macERRORJan 13 2025

Exports:BHMC.estimateBlockModel.GenConsensusClustDCSBM.estimateECV.blockECV.nSmooth.lowrankECV.RankInformativeCoreLRBICLSM.PGDNCV.selectnetwork.mixingnetwork.mixing.BfoldNMINSBM.estimateNSBM.GennSmoothRDPG.Genreg.SPreg.SSPRightSCSBM.estimatesmooth.oracleUSVT

Dependencies:abindashAUCbitopsbootcliclustercolorspacedata.tabledeSolveentropyfansifarverfdafdsFNNgamm4ggplot2gluegrpreggtablehdrcdeirlbaisobandkernlabKernSmoothkslabelinglatticelifecyclelme4locfitmagicmagrittrMASSMatrixmclustmgcvminqamulticoolmunsellmvtnormnlmenloptrnnlspbspcaPPpillarpkgconfigpoweRlawpracmaR6rainbowrbibutilsRColorBrewerRcppRcppEigenRCurlRdpackreformulasrefundrlangRLRsimRSpectrascalessparseFLMMtibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Statistical modeling of random networks with model estimation, selection and parameter tuningrandnet-package randnet
Estimates the number of communities under block models by the spectral methodsBHMC.estimate
Generates networks from degree corrected stochastic block modelBlockModel.Gen
clusters nodes by concensus (majority voting) initialized by regularized spectral clusteringConsensusClust
Estimates DCSBM modelDCSBM.estimate
selecting block models by ECVECV.block
selecting tuning parameter for neighborhood smoothing estimation of graphon modelECV.nSmooth.lowrank
estimates optimal low rank model for a networkECV.Rank
identify the informative core component of a networkInformativeCore
selecting number of communities by asymptotic likelihood ratioLRBIC
estimates inner product latent space model by projected gradient descentLSM.PGD
selecting block models by NCVNCV.select
estimates network connection probability by network mixingnetwork.mixing
estimates network connection probability by network mixing with B-fold averagingnetwork.mixing.Bfold
calculates normalized mutual informationNMI
estimates nomination SBM parameters given community labels by the method of momentsNSBM.estimate
Generates networks from nomination stochastic block modelNSBM.Gen
estimates probabilty matrix by neighborhood smoothingnSmooth
generates random networks from random dot product graph modelRDPG.Gen
clusters nodes by regularized spectral clusteringreg.SP
detects communities by regularized spherical spectral clusteringreg.SSP
clusters nodes in a directed network by regularized spectral clustering on right singular vectorsRightSC
estimates SBM parameters given community labelsSBM.estimate
oracle smooth graphon estimationsmooth.oracle
estimates the network probability matrix by the improved universal singular value thresholdingUSVT